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The equilibrium position of a spherical air bubble in a solid body rotating flow
around a horizontal axis is investigated experimentally. The flow without bubbles is
checked to be solid body rotating. The area of influence of the bubble is characterized
to determine for each bubble whether the incoming flow is perturbed or not. The
demineralized water used is shown to Tbe contaminated, and spinning of the bubble’s
interface is observed and measured. From the measurement of the bubble’s equilibrium
position, drag and lift coefficients are determined. They appear to be dependent on
two dimensionless numbers. Eo the Eötvös number and Rω the rotational Reynolds
number (or Taylor number Ta) can be varied independently by changing the control
parameters, and for that reason are the convenient choice for experiments. (Re, Ro)
with Ro the Rossby number is an equivalent choice generally adopted in the literature
for numerical simulations, and Re denotes the Reynolds number. When using this
second representation, the Ro number appears to be an indicator of the influence on
the force coefficients of the shear, of the curvature of the streamlines of the flow and
of the bubble’s spinning. The bubble’s spinning effect on the lift force is far from
trivial. Its contribution explains the important gap between lift values for a bubble
(not spinning) in a clean fluid and for a bubble (spinning) in a contaminated fluid as
present.

1. Introduction
In many industrial processes such as the oil industry or chemical engineering it

is essential to be able to predict particles or bubbles’ trajectories, and to do so it
is necessary to know the applied forces on the inclusions. Significant progress has
been made and the forces on an isolated bubble have been determined in several
flow situations. For instance, the case of a bubble in a linear shear flow is now well
documented. Legendre & Magnaudet (1998) carried out a detailed numerical study
of the case of a spherical fixed bubble in a linear shear flow for a large range of
Reynolds numbers. Lift and drag forces were derived. The low-Reynolds-number case
was studied analytically by Legendre & Magnaudet (1997) extending Saffman (1965)’s
results for a solid sphere. Auton (1987) investigated the other limit, that of inviscid
flows, and obtained an analytical expression of the lift force for a spherical body.
The lift coefficient was found to be 0.5 for high Reynolds numbers. Unfortunately
many configurations remain in which the bubbles’ behaviour and applied forces are
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160 M. Rastello, J.-L. Marié, N. Grosjean and M. Lance

not fully determined. The case of one bubble in a solid body rotating flow (SBRH ) is
one of them. This simple configuration is of interest in itself and also in that it does
not include any strain effect, contrary to a linear shear flow. Hence, it is meaningful
for whosoever attempts to derive a more general expression of the forces acting on a
bubble in a complex flow, by decomposing this flow into a superposition of simpler
ones. This kind of decomposition has been tackled in the case of simple shear flow
by Magnaudet & Legendre (1998) and appears to be promising. Studies concerning
a single bubble in an SBRH are not many. Naciri (1992) studied experimentally the
forces on a bubble in a flow in solid body rotation around a horizontal axis. He
worked with a slightly deformed bubble, in a fluid which is a mixture of water and
glycerine, for Reynolds numbers ranging from 10 to 100. He found that the bubble
reaches an equilibrium position from which he measured lift coefficients of the order
of 0.2–0.3. Magnaudet & Legendre (1998) numerically computed the forces on a clean
spherical bubble kept fixed in this type of flow. They fit their lift data for Re > 50 with
a function of Re and showed that the lift coefficient recovers the 0.5 inviscid value
obtained by Auton (1987) in a weak linear shear, but for Reynolds numbers larger
than a thousand. Compared with a pure shear, they concluded that the contribution
of the viscous effects vanish less rapidly in this type of non-symmetrical flow. More
recently, van Nierop et al. (2007) revisited Naciri (1992)’s experiment. They worked
with the same fluids, but focused on spherical bubbles over a wide Re range. One of
the remarkable results is a change of sign of the lift coefficient that becomes negative
when Re < 5. Juaneda & Colin (2007) turned their attention to low Reynolds bubbles
(Re � 10) in a Couette flow. The effect of the wall of the cylinder on the forces has
been studied. Other studies exist that deal with different kinds of rotating flows and/or
moving objects in them. As an example, Sridhar & Katz (1995) studied the behaviour
of microscopic bubbles entrained by a vortex, Candelier, Angilella & Souhar (2004)
studied rising bubbles in a flow rotating around a vertical axis with low Reynolds
numbers. In the domain of solid particles, Bagchi & Balachandar (2002b) looked at
the forces applied to a rigid sphere in an SBRH and compared the results with those
they obtained for a linear shear flow. The authors mention that their results agree
qualitatively with the data of Sridhar & Katz (1995) but are markedly different from
those found by Legendre & Magnaudet (1998) and Magnaudet & Legendre (1998) for
clean bubbles. As a rule, there are significant discrepancies in the order of magnitude
of the lift coefficients reported in the literature. These discrepancies mainly arise from
differences in the boundary conditions at the interface (slip or non-slip condition)
and whether the bubble is free (experiments) or fixed (most of simulations).

The present study deals with bubbles at equilibrium in an SBRH around a
horizontal axis. As in Naciri (1992) and van Nierop et al. (2007), the purpose is
to determine the forces applied to a free bubble from measurement of the equilibrium
position. Compared to these two previous experiments, we work exclusively in
demineralized water over an intermediate range of Reynolds number (4 < Re � 280)
with bubbles that remain spherical. We are concerned with the case of bubbles with
a contaminated interface, i.e. the situation commonly encountered over this range of
diameters in water applications. No extreme precaution was therefore taken to keep
this water perfectly pure, as is the case in Duineveld (1995) or de Vries, Biesheuvel &
van Wijngaarden (2002). We find that, depending on where the bubble is stabilizing in
the tank, the bubble’s presence can highly perturb the solid body rotation flow. These
critical equilibrium positions must be avoided for the determination of the forces.
We also show by imaging that spinning of the bubble’s interface occurs. This induces
an additional lift component. We give evidence that the interface of our bubble is
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contaminated, so that the bubble no longer behaves like a clean bubble experiencing
a shear-free condition at its interface. Subsequently, the bubble is set in rotation by
the basic flow and reaches an equilibrium state of spinning. The next section of this
paper provides the governing equations for this study and dimensionless numbers
to describe the bubble’s behaviour. The experimental device is then presented and
bubble’s behaviour and flow characteristics are studied. Finally, the measured drag
and lift forces are reported and discussed.

2. Force balance, dimensionless numbers
A bubble rising freely under buoyancy force in a stagnant viscous liquid reaches

a terminal velocity depending on its size and the liquid’s properties. The well-known
diagram of Clift, Grace & Weber (1978) makes it possible to classify the different
regimes of rise as a function of a bubble Reynolds number, an Eötvös or Bond
number and a property number (or Morton number), with a relation of the form

Re = F (Eo, M). (2.1)

Experimentally, it is possible to keep the bubble fixed with respect to the laboratory
frame when it is injected into a liquid moving uniformly downwards, with a velocity
which is exactly opposite to the bubble’s terminal velocity (see, for example, Alves,
Orvalho & Vasconcelos 2005). A similar but slightly more complex situation occurs
when the bubble is injected into a liquid in solid rotation around a horizontal axis.
As a matter of fact, the bubble will move into the liquid to reach a location where
the gravity force is balanced by the drag force exerted by the fluid on the bubble
and by the additional transverse forces arising from the non-uniformity of the flow.
As a result, the equilibrium position of the bubble, which will be discussed in more
detail later on, is not in general in the horizontal plane of symmetry passing through
the axis of rotation. The consequence is that the observable unknown is not only the
intensity of the relative velocity of the bubble with respect to the liquid (noted UR),
but also its orientation. Of course, the most convenient reference is the direction of
gravity, so that a possible choice to quantify the unknown velocity vector UR is its
intensity UR and its projection on the gravity vector g, or which is equivalent, the
cosine cos θe =UR.g/(URg). In the present experiment, the rotation is uniform and
characterized only by the speed of rotation ω. Therefore, the control parameters are
the gravity vector g, the liquid kinematic viscosity ν, the liquid density ρl , the surface
tension σ , the density difference �ρ = ρl − ρg ≈ ρl , the bubble equivalent diameter d

and the rotation speed ω. Here, the gas viscosity and the gradient of surface tension
due to possible interface contamination are not included. Gas density is neglected
because ρg � ρl . A straightforward dimensional analysis shows that the equivalent
of Clift et al. (1978)’s representation for the rotating motion is

Re = F (Eo, M, Rω), (2.2)

θe = G(Eo, M, Rω), (2.3)

where Re is the bubble’s Reynolds number Re =URd/ν, Eo is the Eötvös number
Eo = g�ρd2/σ , M is the so-called Morton number M = gρ2ν4�ρ/σ 3 and Rω a
rotational Reynolds number Rω =ωd2/ν.

For a spherical bubble, moving relative to the fluid at a moderate to large
Reynolds number, the dynamical equation commonly adopted to describe bubble
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Figure 1. The forces applied to a bubble at equilibrium at moderate to high Reynolds
numbers. FB is the buoyancy force, FD the drag force, FL the lift force. FA takes into account
the added mass force and pressure gradient effects. In the present sketch, the angular velocity
ω and equilibrium angle θe are negative.

motion is (Magnaudet & Eames 2000)

ρlVbCA

dv

dt
= −ρlVb g + ρlVb(CA + 1)

DU
Dt

t

+ ρlVbCL(U − v) × (∇ × U) +
1

2
ρlCDAb|U − v|(U − v), (2.4)

where ρl is the liquid density, Vb the volume of the bubble, Ab its projected area,
v bubble’s velocity, g gravity acceleration and U the velocity of the undisturbed
ambient flow taken at the centre of the bubble. The forces considered in this equation
are respectively buoyancy FB , added mass and pressure gradient FA, lift FL and drag
FD . CA is the added mass coefficient. Its value is 0.5 for spherical bubbles (Magnaudet
& Eames 2000). It depends on the aspect ratio for ellipsoidal ones (Lamb 1934)

CA =
γ0

2 − γ0

with γ0 =
2

e2

(
1 −

√
1 − e2

a sin(e)

e

)
and e =

√
χ2 − 1

χ
(2.5)

with χ the ratio of the major axis to the minor axis of the bubble. CL is the lift
coefficient and CD the drag coefficient. In the present experiment the undisturbed
flow field U is an SBRH at constant angular velocity ω around a horizontal axis. In
this case all the forces balance when the flow is stationary and the bubble comes to
an equilibrium position (see figure 1) where v = 0. With U =ωreθ , (2.4) becomes

CL =
1

2

(
1 + CA − g sin θe

reω2

)
(2.6)

and

CD =
4

3

gd cos θe

r2
e ω

2
, (2.7)

where (re, θe) are the polar coordinates (r, θ) of the centre of the bubble at equilibrium
and d the equivalent diameter of the bubble. Thus, if one measures re and θe, d and
ω, and calculates CA from the aspect ratio χ , one can calculate the values of CL and
CD . It is easily verified that the elimination of UR and θe between (2.1), (2.2), (2.6)
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Figure 2. Picture of the experimental device showing the tank. In the front is the high-speed
camera. At the back the toothed belt can be seen.

and (2.7) yields

CL = CL(Eo, M, Rω)

and

CD = CD(Eo, M, Rω).

This representation proves to be the most convenient for running the experiment
since, for given fluid properties (or M = Cst), the Eötvös number and the rotational
Reynolds number can be varied independently by changing ω and d . Recent works
in the literature (van Nierop et al. 2007) use another equivalent representation based
on the choice of the distance re as a length scale. If one keeps the Morton number
constant, this amounts to replacing Eo and Rω by the bubble Reynolds number and
the dimensionless shear number S (e.g.)

CL = CL(S, Re)

and

CD = CD(S, Re)

with S = ωd/UR = d/re. This choice might not be the most convenient, since S and
Re are not control parameters in the experiments. However, they turn out to be
control parameters for the numerical simulations and so are interesting for easier
comparisons with experimental results, like in van Nierop et al. (2007). In order to
comply with the representation adopted in the literature, the results are here discussed
as a function of Re and Ro = UR/ωd = re/d the Rossby number, which, for the solid
body rotation investigated here is simply S−1.

3. Experimental features
3.1. Experimental setup and procedure

The device is a cylindrical tank (Ø = 10 cm, L = 10 cm) rotating around its axis. The
axis is horizontal. The tank is made of Plexiglas and is mounted in a cylindrical
counterbore and the contact is made using ball bearings (see figure 2). A motor is
coupled to the tank, at the back, using a toothed belt. For this set of experiments, the
range of rotation rates for the tank is from around 3 rad s−1 to around 20 rad s−1. The
front face of the tank is removable for cleaning. Three aligned holes have been made on
the side of the cylinder. They are closed with stoppers. They are used to fill in the tank
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Figure 3. Example of velocity vectors obtained by PIV (Left). (Right) Velocity profile
obtained, cutting the velocity field along the horizontal black line. The velocity profile is
linear. The fluid’s velocity towards the edges of the tank is equal to the velocity of the tank.
The flow is a solid body rotation.

with water and to inject the bubble. The experimental procedure is the following. The
temperature (T ) of the demineralized water contained in the tank is measured using
a thermometer. A bubble is then injected into the tank. After that, the tank is set in
rotation. A few minutes are allowed to pass so that the fluid is in SBRH and the bubble
stabilizes at equilibrium. Then measurements are carried out (see § 3.3). Typical values
are T ∈ [21◦C, 27◦C], d ∈ [0.24 mm, 1.6 mm], χ ∈ [1, 1.15], Re ∈ [4, 280], Ro ∈ [5, 35],
Eo ∈ [8 × 10−3, 0.35], Rω ∈ [0.35, 40], CA ∈ [0.5, 0.6]. Temperature values are used to
compute the water viscosity for each run.

3.2. Flow characterization

The first stage is to study the flow without bubbles to check that it is an SBRH.
Velocity profiles were measured using standard PIV (frame rate = 15 frames s−1)
and small hollow glass spheres (d =10 μm) as seeding particles. The laser sheet was
perpendicular to the flow’s axis of rotation. It was found that the velocity profiles were
linear over the whole section of the tank for every rotation rate (see figure 3) and well
matched with the velocity of the tank at the wall. The second stage of the study is to
determine the area perturbed by the bubble’s presence. The goal is to check whether
the incoming flow on the bubble is still an SBRH or is perturbed. The bubble’s wake
and perturbed area were visualized using both high-speed PIV (frame rate = 900
frames s−1) and long-time exposure pictures. For both, small fluorescent polyamid
seeding particles (d =10 μm) were used, and the laser sheet was again perpendicular
to the rotation axis. High-speed PIV enabled us to have access to the perturbed
velocity fields. Indeed, by simply translating the laser sheet we measured, during the
same run, the SBRH velocity fields in a plane containing the bubble and in a plane not
affected by the bubble and located far from its equilibrium position. By subtracting
these two SBRH velocity fields with and without the bubble it was then possible to
extract only the flow perturbation caused by the presence of the bubble. For small
bubbles, with Re � 60–70, the wake behind the bubble is very small. It vanishes very
rapidly. The incoming flow on the bubble has no reminiscence of it whatever the
position of the bubble in the tank (see figure 4). For larger bubbles (60–70 � Re) the
bubble’s wake extends farther downstream from the bubble equilibrium position and
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Figure 4. A small size bubble (d ≈ 0.4 mm, Re ≈ 20, Ro ≈ 7) and its perturbation area. The
perturbed velocity field is obtained by high-speed PIV. The bubble is represented by the white
circle. The axis of rotation of the tank lies at the intersection of the black horizontal and vertical
axes. The circular line is what the streamline of the flow would be at equilibrium distance re

without the bubble. The velocity perturbations induced by the bubble are represented by the
vectors and their magnitude by the greyscale. The white zone close to the bubble corresponds
to an area in which there were not enough seeding particles to have correct velocity vectors.
For such small bubbles the perturbed zone is very restricted. The incoming flow on the bubble
does not feel the perturbation whatever the equilibrium position is.
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Figure 5. Same as in figure 4 but for a medium size bubble (d ≈ 1.1 mm, Re ≈ 130, Ro ≈ 7).
In this configuration, the perturbed zone extends farther downstream from the bubble and its
lateral expansion is significantly wider. But as shown here, it does not affect the incoming flow.
The wake appears to be more curved than the streamlines of the undisturbed flow.

is comparatively wider. When the equilibrium position is far enough from the centre
of the tank (6–7 � Ro), the wake vanishes over a distance of the order of πre, and
so does not perturb the incoming flow on the bubble (see figure 5). As can also be
seen in the figure, a curvature of the wake greater than that of the streamlines of
the undisturbed flow is frequently observed. The fact that the wake bends inwards is
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Figure 6. Long-time exposure for a large bubble (Re > 100). Ro < 6. Strong coupling between
the bubble, the flow and two co-rotating vortex occurs with a 2ω frequency. This frequency
can be seen as the signature of that coupling, so, no forces are measured when it appears in
the spectrum of the bubble locations around equilibrium.

linked to an inward flow developing at the outer edge of the wake and visible at the
bottom of the figure. The reasons for this inflow are still unclear. When Ro � 6–7 a
precession of the bubble occurs and a peak appears in the power spectrum of the
displacements of the bubble (x-position of the bubble for instance), at the frequency
2ω (see figure 7b). This peak is absent when the precession does not take place (see
figure 7a). As will be seen in what follows this precession strongly affects the incoming
flow on the bubble, which is then no longer an SBRH. Forces are not measured in this
configuration. In the geostrophic limit where Ro � 1, Rω � 1 we know (Batchelor
1967) that the mass of fluid displaced by any object (bubble or solid particle) is
subject to the Coriolis force, which in turn induces an opposite force on the object,
expressed as

F = 2(ρlVb)ω × U . (3.1)

Under the action of this force, the object describes a uniform circular motion at
frequency 2ω. A two-way coupling then develops between the object and the fluid,
the fluid around the object being affected by this motion. In the present case, Rω is of
the order of magnitude of 10–30 and Ro is approaching 1 (Ro � 6–7), thus the above
reasoning cannot be strictly applied. But there are strong reasons to think that the
observed precession with a 2ω-peak in the spectrum is a reminiscence of this rigorous
circular motion. As can be seen in figure 6, the precession of the bubble is coupled
with the release of two co-rotating vortex behind the bubble, that come periodically
towards the rotation axis of the flow. This coupling perturbs even the flow towards
the rotation axis as well as the incoming flow on the bubble. As mentioned before, in
this context the incoming flow on the bubble is no longer an SBRH.

3.3. Bubble’s equilibrium – force measurements

With the exception made of the experiments of § 4.2.2, all force measurements were
made in demineralized water, without adding any seeding particles. To visualize the
bubble, the tank is lit up from behind by a white spotlight. The camera looks into
the tank from the front face. The alignment between the camera and the tank was
adjusted at best. The remaining small deviations were quantified. They are taken into
account for the calculation of the equilibrium position of the bubble. For each run a
series of around 2200 images of the bubble at equilibrium are recorded. Then, image
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Figure 7. Example of typical power spectrum of the x position of the bubble. (a) Large
bubbles (d � 1 mm) far from the axis (Ro � 10); peaks: approx. ω/2, ω, approx. 10 Hz and
(b) bubble close to the axis; peaks: approx. ω/2, ω, 2ω.

treatment is used to determine, for each image, the size of the bubble, its aspect ratio
and its equilibrium position. The whole procedure is fully described in Rastello et al.
(2007). For each image, the dimensionless numbers and coefficients are worked out.
For each of them the mean over the whole set gives the value for the run. It must be
mentioned that the bubble never stabilizes completely onto its equilibrium position,
even after a very long wait. Small movements remain. Their magnitude is of the order
of the tenth of a millimetre. They induce oscillations of the dimensionless numbers
and coefficients. These oscillations are small and do not prevent determination of
the mean values. The frequencies that appear in these bubbles’ small motions show
interesting features. Indeed, when looking at the power spectrum of the displacements
(x position for instance) (see figure 7), one can notice that noise is nearly non-existent.
Well peaked recognizable isolated peaks appear. One corresponds to the ω-rotation
rate of the tank and is present in all experiments. A second one at a frequency close to
ω/2 is also very often observed, but its origin could not be determined. Two additional
peaks are identified for certain flow situations. As mentioned before, a 2ω peak appears
when the bubble is too close to the rotation axis (figure 7b). This observation has
been used to remove from the database the experiments in which force measurements
cannot be made. Finally, for large bubbles (Re � 150) with an equilibrium position
far from the axis of rotation of the flow (Ro � 10), a peak appears around 10 Hz (see
figure 7a). There are serious reasons to think that this frequency is a signature of the
vortex shedding in the wake behind the bubble and of the coupled oscillating motion
it causes on the bubble. Indeed, when looking at the vorticity in the wake behind
the bubble, vorticity releases are observed with a frequency of the order of 10 Hz
(see figure 8). The existence of these vorticity releases over that particular range of
Reynolds numbers and at that frequency is consistent with results in the literature.
The onset of wake instability, like the frequency of vortex shedding, strongly depends
on bubble size, shape, degree of contamination (Leal 1989; Bel Fdhila & Duineveld
1996) and on the type of flow (Sakamoto & Haniu 1995). For contaminated bubbles
behaving like solid spheres, the critical Reynolds numbers where wake instability and
vortex shedding is expected to set in is Rec ≈ 175 according to numerical simulations
(Kim & Pearlstein 1990) and Rec ≈ 202 according to experiments (Hartunian &
Sears 1957; Bel Fdhila & Duineveld 1996). This corresponds to the upper range
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Figure 8. Maps presenting the bubble (d ≈ 1.2 mm, Re ≈ 150) and the vorticity at different
times. (a) t = t0, (b) t = t0 + 1/10 s, (c) t = t0 + 2/10 s, (d) t = t0 + 3/10 s and (e) t = t0 + 4/10 s.
Vorticity releases are observed behind the bubble, with a frequency of approximately 10 Hz.

investigated here. The typical frequencies reported in these studies vary between 8 Hz
and 11 Hz depending on bubble size, which is not far from our observations. In
other experiments where bubbles can be considered as rising in pure liquid (Lunde
& Perkins 1998; de Vries et al. 2002), the frequency of vortex shedding measured
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Re (%) Ro (%) CD (%) CL (%)

Re � 50 5 5 15 10
Re < 50 10 10 20 100

Table 1. Order of magnitude of the uncertainties estimated with the standard propagation
method for the different parameters and for two different Reynolds ranges.

σRe σRo σCD
σCL

0.38 0.16 0.017 0.025
1.22 0.31 0.077 0.115

Table 2. Statistical uncertainties. Mean standard deviation for the different parameters (first
row: filtered dataset, second row: non-filtered dataset).

for instance by Lunde & Perkins (1998) is of the order of 12 Hz. This remains
within the same order of magnitude as our value, although the mechanism of vortex
accumulation and wake dynamics strongly differ in that case. A small oscillation of
the bubble in the direction parallel to the axis of rotation is also sometimes observed,
but it was not possible to measure these small movements with the present measuring
device. While determining the dimensionless numbers and coefficients, uncertainties
were estimated in two complementary ways. For each quantity (Re, Ro, CD , CL), the
uncertainties were first calculated by adding the uncertainties of each parameter they
were function of, according to the standard propagation method (table 1). However,
one may ask the degree of relevancy of the uncertainties thus estimated. In particular
the uncertainty on CL, is of the order of 100 % for Re < 50. This seems excessive in
view of the limited dispersion reported in figure 12 over that range. This arises from
the fact that θe, which is the main contributor to the overall uncertainty in CL, is very
close to 0 in this case (the equilibrium point is very close to the horizontal axis). A
statistical uncertainty for each quantity was therefore calculated in a second step. The
procedure is as follows. For each run, the spectrum of the quantity is computed and
the peaks due to the oscillations of the bubble are removed (ω and ω/2). Then the
histogram of this filtered quantity is plotted. It appears to be well fitted by a Gaussian
function, showing that each filtered dataset follows a normal distribution. Finally the
standard deviation for each fit is calculated and an average σ over all the runs is
made. This average value presented in table 2 is justified by the fact that the standard
deviation does not vary significantly over the range covered by each quantity. The
statistical dispersion is at most ±2σ within a 95.5 % confidence interval and remains
weak. The mean standard deviation of the non-filtered data is also reported in the
same table. Comparison between the two shows how bubbles’ oscillations contribute
to the overall dispersion of our measurements.

4. Forces on the bubble
4.1. Drag force

The first step was to test the purity of the demineralized water. This was done by
determining the drag coefficient for rising bubbles in the tank at rest. By comparing
the present data with existing ones for clean bubbles on the one hand and for solid
particles on the other hand, we can estimate the importance of the contamination
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Figure 9. Drag force versus Reynolds number. The inserted figure is a zoom of a part of
the principal one. —: clean bubble in a uniform flow (Clift et al. 1978), - - -: solid sphere in
a uniform flow (Mei, Klausner & Lawrence 1994), +: rising bubbles in the tank at rest, �:
bubbles in the SBRH with Ro < 10, ×: bubbles in the SBRH with Ro � 10. The fluid is for all
these experiments not seeded demineralized water.

of bubble interfaces in our fluid. Indeed depending on the amount of contaminants
on their interface, bubbles have a behaviour somewhere in between that of clean
bubbles and solid particles. The points of the present study fall on the curve that
describes solid spheres (see figure 9). This shows that the demineralized water we use
cannot be treated as a pure liquid with our operating conditions. The interface of the
bubbles is thus contaminated. This result is not really surprising. We do not use a
Millipore purification system as in Duineveld (1995) or de Vries et al. (2002). It is then
difficult with our experimental procedure to keep the facility extremely clean. Finally,
bubbles are very small, so their interfaces are contaminated more easily and rapidly
than larger ones (Bel Fdhila & Duineveld 1996; Cuenot, Magnaudet & Spennato
1997; Alves et al. 2005). Since the data fall on the curve that describes solid spheres,
bubbles are typically in the regime where their interfaces are highly contamina-
ted and the terminal velocity is independent of the contaminants concentration
(Clift et al. 1978). Referring to Bel Fdhila & Duineveld (1996) and Cuenot et al.
(1997), this occurs when nearly the rear half of the bubble surface is covered by
surfactants, and the shear stress and the pressure are dramatically increased at the
leading edge of the spherical cap-angle thus formed. This is the regime commonly
encountered over that range of diameters in applications involving water, which is an
argument to think that the results of the study will apply to a number of practical
situations. The second step was to measure the drag of the bubble in the SBRH. On
the same figure as before the results for the bubble in the SBRH are plotted. A small
but non-negligible effect of the rotation of the fluid can be noticed. Indeed, when the
fluid is rotating, the values of CD for the bubbles have a tendency to be above the
curve for solid spheres in a uniform flow. The gap with the curve appears to increase
when Ro decreases. An increase of the same order of magnitude has already been
noticed by van Nierop et al. (2007). Legendre & Magnaudet (1998) have studied the
increase of the drag with the shear for a bubble in a linear shear flow. They proposed
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Figure 10. CD/CD0 as a function of Ro−1. —: 1 + 0.55Ro−2 (Legendre & Magnaudet 1998),
- - -: 1+3Ro−2, �: bubbles in the SBRH with Ro < 10, ×: bubbles in the SBRH with Ro � 10.

Figure 11. Visualization of a bubble and its wake. The visually estimated edges of the wake
have been materialized with a dashed line. db ≈ 1 mm,Re ≈ 120,Ro ≈ 8,Ωb/ω ≈ 1.4. The near
wake appears to be quite large. This must have an impact on the drag, increasing it.

the following correction for the drag:

CD = CD0 × (1 + 0.55S2) (4.1)

with CD0 the drag coefficient for a bubble in a uniform flow. In their study, van Nierop
et al. (2007) graphically corrected their drag coefficient with the law of Legendre &
Magnaudet (1998). It seems to be enough qualitatively to reduce the gap with the
curve for solid particles. Unfortunately no quantitative results are given to which
we could compare our results. In the present case the influence of S =Ro−1 appears
to be stronger than that found for linear shear flows. Indeed, if one wants to fit
the data with a second-order polynomial, the prefactor before Ro−2 is more likely
to be 3 than 0.55 (see figure 10). Three differences with Legendre and Magnaudet’s
study can be pointed out. In a linear shear context, the increase of S is only linked
to an increase of the shear. In the present case, when Ro−1 = S increases, both the
shear and the curvature of the streamlines go up. This may have an effect on the
drag. A second point is that the present dirty bubble rotates on itself (see § 4.2.2
for more details). Indeed, because the bubble’s interface is polluted, the no-shear
condition at the interface does not hold anymore. Hence, the asymmetry of the flow
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Figure 12. Lift force versus Reynolds number. - - -: (4.3): fixed clean bubble in a solid body
rotating flow (Magnaudet & Legendre 1998). �: bubbles in the SBRH of demineralized water
only with Ro < 10, ×: bubbles in the SBRH of demineralized water only with Ro � 10, 	:
bubbles in the SBRH with Ro < 10, the fluid is the one used to visualize bubble’s spinning
(demineralized water + seeding particles).

makes the contaminated surface of the bubble rotate. This is probably also a source
of increase for the drag force. This hypothesis can be reinforced by the fact that
Bagchi & Balachandar (2002a) observed an increase of the drag when the particles
they studied were spinning. The last point is surely linked to the two previous ones.
While making observations of the bubble and its wake (for more details see § 4.2.2)
we noticed that the near wake of the bubble in the present SBRH conditions is
quite wide (see figure 11). This is caused by the non-symmetrical deflection of the
flow which is particularly strong in this region. Referring to Magnaudet & Legendre
(1998) this deflection is more accentuated than in a linear shear flow for the same
Re conditions, and it seems reasonable to think that this also increases the drag.
An important point must be mentioned here. During the phase of visualization of
the flow (long-time exposure) it was checked that no Taylor column develops on the
front and backsides of the bubble. This was visualized by translating the laser sheet
to explore these regions of the flow. This is consistent with the fact that the bubble is
on an equilibrium position and that the Ro number is no lower than 1. The increase
of CD cannot be assigned to this effect.

4.2. Lift force

4.2.1. Presentation of the results

Figure 12 shows the lift coefficients measured in our SBRH, as a function of Re
for different ranges of Ro. The empirical expression of the lift coefficient for a fixed
clean bubble in a rotating flow obtained by Magnaudet & Legendre (1998) from
their numerical simulations (4.3) is plotted on the same figure. Several remarks can
be made. Firstly, different behaviour is observed below and above Re = 60–70. Below
this value the lift coefficient seems to be independent of the Rossby number. Above,
significant dependence can be noticed. CL appears to increase when Ro increases.
Secondly, there is an important discrepancy between our data and the empirical
expression of Magnaudet & Legendre (1998). The measured lift coefficients are much
higher than those of the simulations and do not tend asymptotically like simulations
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Figure 13. Lift force versus Reynolds number. - - -: (4.3): fixed clean bubble in a solid body
rotating flow (Magnaudet & Legendre 1998). ×: results from the present study, �: results
from van Nierop et al. (2007)’s study.

do, to the 0.5 value of Auton (1987)’s inviscid theory at high Reynolds numbers. Here,
although the Reynolds numbers investigated remain smaller than 300, the coefficient
seems to tend to 1–1.2, which is more than twice the magnitude obtained by these
authors. Comparing the present results with van Nierop et al. (2007)’s study brings
out some interesting features (see figure 13). For low Re number values, the results
of both studies fall along a same single curve, even if the fluids used are different
(water versus glycerine–water mixture). The asymptotic value of CL at large Reynolds
numbers is approximately 1 in both cases, rather than 0.5. There are other studies that
show that for contaminated microscopic bubbles in a vortex (Sridhar & Katz 1995) or
solid spheres in an SBRH (Bagchi & Balachandar 2002a), lift coefficients are higher
than those expected for clean bubbles from the inviscid theory. Here, the interface
of our bubbles was proved to be contaminated and it is probable that a boundary
condition more like the non-slip type might replace the shear-free boundary condition.
This would explain the discrepancy between these simulations and our experiments.
The aim of the work presented in the next two parts was to investigate this point in
detail by imaging the interface of the bubble.

4.2.2. Bubble’s spinning

The interface of the bubble was visualized using a PIV-like method and the
high-speed camera with a magnification system (extend tubes). The field of view
is typically 12 × 10 mm. The fluid is seeded with very small fluorescent polymer
particles (size= 3 μm, density= 1.05 g cm−3). They are illuminated with a laser sheet.
The camera takes the images at 200 frames s−1. Some of the particles come and cling
to the interface of the bubble. Looking at them gives information on the movements
of the bubble’s interface. As can be observed in figure 14, the bubble’s interface is
clearly rotating. To avoid any ambiguity, it is useful to specify what this so-called
rotation actually describes. What is observed is that some particles rotate around
the bubble. Unfortunately, the spatial resolution accessible from the visualizations
does not allow us to say whether these particles are at the interface or very near
it. Whatever the answer, it is reasonable to think that they rotate with the same
velocity as that of the fluid at the interface, as imposed by the boundary conditions
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1 mm

Figure 14. Visualization of the rotation of the bubble’s interface. The time interval between
two images is 20 ms, db ≈ 0.66 mm,Re ≈ 50,Ro ≈ 8,Ωb/ω ≈ 1.2. The marked arrows are there
to help to follow the particles stuck on the interface. On the eighth image, the typical zones
of the flow are marked. + corresponds to the zone in which the particles at the interface
accelerate. − corresponds to the zone in which the particles at the interface decelerate. An
idea of the streamlines in the wake is given. One point to notice is the existence of a zone in
which the fluid turns back.

on the contaminated surface of the bubble. Thus, for the sake of simplicity we will
assimilate their motion to the rotation of the interface and speak thereafter of a
spinning interface. This interface spinning can be viewed as the difference between
the circulation of the liquid at the contaminated interface and that which would exist
around a clean bubble of the same diameter, with the consequence it implies on
the lift force. This rotation occurs for every bubble, whatever its size or equilibrium
position. Various specificities of this rotation can be mentioned. The rotation of the
interface is not uniform. In the area where the interface is close to the bubble’s
wake, the particles stuck on the interface accelerate. In the region which is close to
the incoming flow, they decelerate. This can be noticed by looking at the evolution
of the angular space between arrows on the sequence of images in figure 14. We
deduce that these particles are not in a solid body rotation as the surface of a solid
sphere would be. Their behaviour at the interface is complex and is something in
between the shear-free and non-slip condition. However, a mean rotation rate was
computed for each bubble (Ωb). This was done by counting the number of images
necessary for a particle on the interface to make a complete turn. This rotation rate
divided by the one of the tank (ω) is plotted in figure 15. From this figure it can
be noticed that the rotation rate of the bubble’s interface is higher than that of the
tank. On the other hand, if one compares the velocity of the interface (in m s−1)
to the velocity of the fluid at the centre of the bubble, the ratio is of the order of
0.1–0.2. One consequence of the interface’s rotation is the presence of a horizontal
component of the fluid velocity in the wake, near the bubble’s interface. This ends
with the streamline turning back where the wake attaches again (see last image of
figure 14). This induces asymmetry in the wake which increases the asymmetry due
to the SBRH. No significant recirculation is noticed around the top of the bubble’s
interface. The stagnation point of the incoming flow appears to be right in the middle
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Figure 15. +: ratio between the mean rotation rate of the bubble’s interface (Ωb) and the
rotation rate of the tank (ω) versus the Reynolds number. —: data fitting: 1.5 − exp(−Re/40).

of the interface regarding the incoming flow. No shift was observed. To be sure that
the presence of the particles does not modify the characteristics of the bubble, two
measurements of the lift forces were taken with the seeding particles in the water.
They are represented in figure 12. No difference can be noticed with the values of the
lift without particles in water. In addition, while making all the other experiments
with seeding particles the bubbles were examined qualitatively from the point of view
of the forces. For all the experiments, the equilibrium positions were found to be the
same as would have been observed for a bubble in water without seeding particles and
with the same other experimental conditions. Hence, it can be considered that neither
the particles nor the surfactants used by the manufacturer to avoid their aggregation
modify the forces experienced by the bubble.

4.2.3. Magnus and shear lift forces

At this stage the purpose is to see if the combined effect of shear and the Magnus-
like effect can explain the lift forces we measured. Bagchi & Balachandar (2002a)
did numerical simulations on rotating and non-rotating particles in a linear shear
flow. They show that for intermediate Reynolds numbers it is possible to linearly
superimpose the effects of shear and of Magnus for the lift

CL(shear, Magnus) = CL(shear, 0) + CL(0, Magnus). (4.2)

We make the assumption that it is also possible here for the bubbles. We then
superimpose the lift force on a bubble only due to the SBRH and the lift force due to
the Magnus effect for a spherical body in a uniform flow. To our knowledge, no lift
force for a non-rotating contaminated bubble in an SBRH has yet been computed.
Hence, as a first approximation, we use Magnaudet & Legendre (1998)’s expression
for the lift force for a clean bubble in an SBRH

CL(shear, 0) = 1
2
(1 + CA) − 0.25 + 1.2Re−1/3 − 6.5Re−1 (4.3)

with CA given by Lamb (1934)’s expression (see § 2). The Magnus contribution is the
one proposed by Bagchi & Balachandar (2002a) for a rotating particle in a uniform
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Figure 16. Lift force versus Reynolds number. - - -: (4.3): fixed clean bubble in a solid
body rotating flow (Magnaudet & Legendre 1998). �: bubbles in the SBRH with Ro < 10, ×:
bubbles in the SBRH with Ro � 10, —: superposition of a lift component due to shear and a
lift component due to a Magnus effect: (4.6).

flow and applied to the present configuration

CL(0, Magnus) = 0.55
Ωbd

ωre

× 3re

8d
. (4.4)

In Bagchi & Balachandar (2002a), the Magnus-like coefficient was defined as follows:

FL(0, Magnus) = 0.55
Ωbd

ωre

× 1

2
ρlSbU

2
r

with Sb the projected particle area, Ur its relative velocity. This is why, to be consistent
with the notations in this paper, the last factor appears in CL(0, Magnus) in (4.4).
In the expressions of CL(shear, 0) and of CL(0, Magnus), we use Re determined
experimentally for each bubble. Ωb/ω is estimated using the experimental fit of the
data of § 4.2.2:

Ωb

ω
= 1.5 − exp

(
−Re

40

)
. (4.5)

The summation of (4.3) and (4.4) yields a lift coefficient of the form

CL =
1

2
(1 + CA) − 0.25 + 1.2Re−1/3 − 6.5Re−1 + 0.55 × 3Ωb

8ω
. (4.6)

Equation (4.6) is plotted together with the experimental data in figure 16. The
interesting point is that there is now no longer any discrepancy between the curve
and experimental data, without any adjusting parameter. To take into account the
influence on Ro, it is probably necessary to take into account also nonlinear effects
between both phenomena (shear and Magnus). Indeed, depending on the equilibrium
position of the bubble, the wake of the bubble is modified. So is the accelerating and
decelerating zones associated with the rotation of the bubble. It is worth noting that
Sridhar & Katz (1995) conjectured that the free rotation of the microscopic bubbles
in their experiments was possibly responsible for the enhanced lift force in a vortex.
Here is some proof that such a rotation actually exists for spherical millimetre bubbles
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in an SBRH when interfaces are contaminated and that it has a significant effect on
the forces.

5. Conclusion
The purpose of the present study was to measure the drag and lift forces on a

single bubble at equilibrium in a horizontal SBRH. Measurements were taken in
demineralized water i.e., a contaminated fluid as regards bubble’s interfaces. This
point was checked by measuring the drag coefficient of bubbles rising in such water
when the rotation is stopped. The coefficients were found to follow the curve of solid
spheres, indicating that interfaces are actually contaminated. Various tests were then
carried out to qualify the flow. Firstly, the flow without any bubble was characterized
as actually being an SBRH. Secondly, the flow induced by the bubble’s presence
was studied. For small diameter bubbles (Re � 60–70), or large diameter bubbles
which stabilize at a distance greater than 6–7 diameters from the centre of the flow
(Re � 60–70), the wake decays in less than half a turn, and so does not affect the
incident flow on the bubble. The flow field can be considered in a state of SBRH.
Now, if the equilibrium position of large bubbles is less than 6–7 diameters from
the centre of the flow (Ro < 6–7), the incident flow on the bubble is affected. Strong
two-way coupling develops between the bubble-induced flow, the centre of the SBRH
and the bubble, with a frequency equal to twice the angular frequency of rotation of
the tank. This provides a criterion that was used to remove the force measurements
obtained in such situations. The lift and drag forces on the bubble were determined
by measuring the equilibrium position of the bubble from images of the flow. With
the tank rotating, the drag coefficients lie above the curve for solid spheres and
significantly increase when Ro decreases. This increase is larger than that expected
for example from the numerical simulations of Legendre & Magnaudet (1998) on
a clean bubble fixed in a linear shear flow. The reasons for this have not yet been
completely understood, but we can suspect that these differences arise from a higher
non-symmetry of the flow and the particular boundary condition at the interface of
the bubble. Indeed, the curvature of the streamline and the spinning of the bubble,
which is one of the important findings of this paper, accentuate the non-symmetry
of the wake near the rear of the bubble and doing so probably increases the drag.
The lift coefficients are found to depend on Ro for Re > 60–70 and to be insensible
to it below. They increase when Ro increases, unlike the drag coefficients which
decrease. Their magnitudes are approximately twice as high as the simulations of
Magnaudet & Legendre (1998) for a clean bubble and do not tend asymptotically, as
simulations do, to the value 0.5 of Auton (1987)’s potential theory at high Reynolds
numbers. The origin of these higher magnitudes have been determined by visualizing
in detail the interface of the bubble. A careful study of this interface showed that it
is spinning. The rotation rate Ωb/ω was quantified. It was found to be higher than
1 and to increase with the Reynolds number. A simple model for the lift coefficient
has been proposed combining the effect of shear and the effect of this spinning of
the bubble. The predictive curve obtained with this model agrees rather well with the
data, without any adjusting parameter.
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A. Biesheuvel for many fruitful discussions and remarks. The authors would also like
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PIV, and N. Quennouz for some post-treatment of the results.
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